EGS 694-0092 103.0096

> SAN GABRIEL VALLEY 15836

INLAND EMPIRE ENVIRONMENTAL SERVICES

7291 Ashley Avenue Colton, California 92324 (909) 872-0501 FAX (909) 824-1442

RESULTS OF THE SECOND PHASE OF GROUNDWATER MONITORING CONDUCTED AT THE CROWN CITY PLATING COMPANY 4350 TEMPLE CITY BLVD. EL MONTE, CALIFORNIA

PREPARED FOR

Mr. Lawrence P. Donovan III
CROWN CITY PLATING COMPANY
4350 Temple City Blvd.
El Monte, California 91731

SUBMITTED TO:

California Regional Water Quality
Control Board - Los Angeles Region
101 Centre Plaza Drive
Monterey Park, California 91754-2156
Attn: Mr. Solomon

PREPARED BY:

INLAND EMPIRE ENVIRONMENTAL SERVICES
7291 Ashley Ave.
Colton, Ca. 92324

February 21, 1994

INTRODUCTION

We are pleased to present this second phase of the groundwater monitoring and water sampling of three wells at the Crown City Plating Facility. The California Regional Water Quality Control Board - Los Angeles Region is requiring that groundwater monitoring wells be sampled approximately every three months.

FIELD PROCEDURES

Water samples from three monitoring wells, E-1, E-2, and E-3, were taken. Well E-1 is located near the south central edge of the property. Well E-2 is located adjacent to the storm water drainage ditch which runs along the eastern edge of the property and approximately fifty feet from the southern edge of the property. Well E-3 is located between the Mold Shop and the Rack Department. These shops are located near the northern edge of the property and on an additional parcel of the property which extends toward the east. The wells are located approximately on the plot plan (see Appendix A) but no actual land survey was conducted by IEES during this initial water sampling.

Initial measurements of the depth of water and total depths of the cased wells were made prior to purging. Purging was accomplished using disposable teflon bailers. One bailer was dedicated to each well to eliminate cross contamination. The temperature, conductivity, and pH were monitored during purging and these results are enclosed as an appendix. Purge water was stored on site in plastic barrels supplied by Crown City Plating and disposed in their waste water treatment system.

Water samples were recovered using a teflon bailer equipped with a teflon stop cock in its base. Two water samples were transferred to an EPA approved 40 ml VOC bottle via the teflon stop cock. The bottles were then sealed, inverted to check for any possible air bubbles, labeled, and placed on ice for transport to an Environmental Testing Laboratory.

INLAND EMPIRE ENVIRONMENTAL SERVICES

Chemical analysis of the water samples was conducted using EPA method 502.2 for drinking water to determine the type and amounts of any contamination that may be present in the wells. EPA method 180.1 was used for turbidity measurements.

The total depth of the wells and depth to groundwater were measured in each well prior to purging. Silt and mud were encountered at the bottom of each well. Therefore, the measurement of the bottom of the well may not be representative of the actual total depth. The initial measurements obtained were:

WELL	WELL DEPTH	WATER DEPTH
E-1	92.3	78.9'
E-2	105.47'	79.6'
E-3	102.20'	80.62'

The wells were purged by hand using disposable bailers attached to new cotton commercial cloth line. The wells were bailed until the monitoring parameters stabilized. These tests were conducted after every fifth bailer or between each 2.5 gallons of water that had been purged from each well. Water samples were taken for laboratory analysis only after these parameters had stabilized.

Silts and fines were noted in all of the groundwater wells while sampling. Approximately one quart of water was recovered from each well and submitted for turbidity analysis.

LABORATORY ANALYSIS

Waste Testing Laboratory. An EPA type Chain of Custody form was used to record the route of custody of the samples. Instructions were given on the Chain-of-Custody form to analyze the water samples using EPA Method 502.2 for drinking water and EPA method 180.1 for turbidity (see Appendix B). However, the laboratory made the desidion to analyze the samples using EPA Method 8240.

All three of the groundwater monitoring wells showed some degree of contamination with Halogenated Volatile Organic compounds and high amounts of suspended material.

INLAND EMPIRE ENVIRONMENTAL SERVICES

Well E-1 had a turbidity index of 2700 NTU using EPA method 180.1 with a detection limit of 1 NTU. Five chlorinated compounds were detected. These compounds are presented as TABLE I.

TABLE I

COMPOUND	AMOUNT	DETECTION LIMIT
Chloroform	6.5 μg/L	2.0 μg/L
1,1-Dichloroethene	18 μg/L	5.0 μg/L
Tetrachloroethene	180 μg/L	2.0 μg/L
Trichloroethene	130 μg/L	2.0 μg/L
Methylene Chloride	99 μg/L	10.0 μg/L
1,1,1 Trichloroethane	33 μg/L	2.0 μg/L

Well E-2 had a turbidity index of 60 NTU using EPA method 180.1. Eight chlorinated compounds were detected in this well. These compounds are presented as TABLE II.

TABLE I

COMPOUND	AMOUNT	DETECTION LIMIT
Trichloroethene	508 μg/L	2.0 μg/L

Well E-3 had a turbidity index of 110 NTU. Five chlorinated compounds were detected in this well. These are presented as TABLE III.

TABLE III

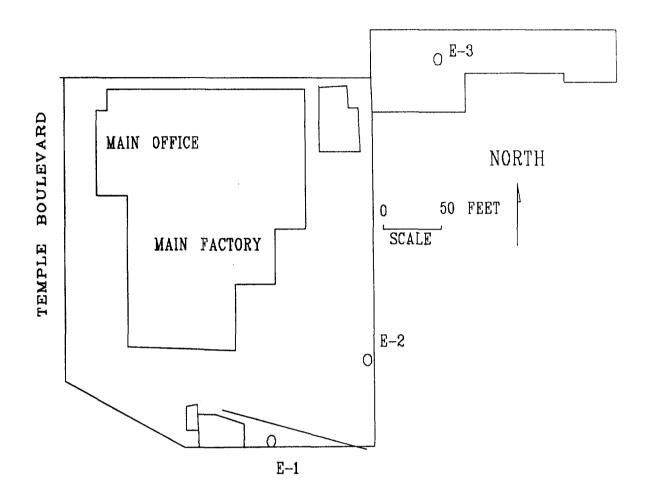
COMPOUND	AMOUNT	DETECTION LIMIT
Tetrachloroethene	14.0 μg/L	2.0 μg/L
Trichloroethene	370 μg/L	2.0 μg/L

INLAND EMPIRE ENVIRONMENTAL SERVICES

CONCLUSION

The three groundwater monitoring wells have indications of four primary chlorinated compounds: Trichloroethene, Tetrachloroethene, 1,1,1-Trichloroethane, and 1,1-Dichloroethene. There was an insignificant finding of other chlorinated compounds at or near the detection limit of the analytical method. All three of the monitoring wells have silted up to varying degrees. It is to soon to speculate upon any pattern or trend demonstrated by the change in the components of the three wells between the first and second samples.

The work performed during this Phase of the groundwater monitoring was completed in accordance with the professional practices and standards currently accepted in the Geotechnical / Environmental consulting industry and the Regional Water Quality Control Board - Los Angeles Region.


Sincerely Yours,

Lawrence P. Pearce
Owner - Inland Empire Environmental Services

APPENDIX A PLOT PLAN AND WELL SAMPLING DATA

INLAND EMPIRE ENVIRONMENTAL SERVICES

CROWN CITY PLATING PLOT PLAN SHOWING APPROXIMATE LOCATION OF MONITORING WELLS

WELL E-1

AMOUNT PURGED IN GAL.	COND. X 100	TEMPERATURE	рН
2.5	8.47	63.2	7.76
5	8.62	63.8	7.73
7.5	8.25	63.4	7.68
10	8.53	62.9	7.67
12.5	8.45	62.6	7.69
15	8.45	62.5	7.70
17.5	8.45	62.5	7.69
20	8.45	62.6	7.69
	WELL E-2		
AMOUNT PURGED IN GAL.	COND. X 100	TEMPERATURE	Нq
2.5	6.50	67.0	7.96
5.0	6.43	64.6	7.89
7.5	6.42	63.6	7.8.5
10	6.49	64.1	7.81
12.5	6.63	64.3	7.92
15	6.65	63.9	7.99
17.5	6.64	63.1	7.93
20	6.67	64.0	7.93
22.5	6.67	63.9	7.93
25	6.67	64.0	7.93
27.5	6.67	64.0	7.92
30	6.67	64.0	7.92
	WELL E-3		
AMOUNT PURGED IN GAL.	COND. X 100	TEMPERATURE	pН
2.5	2.36	70.6	9.37
5	2.1	66.6	9.12
7.5	2.77	67.3	9.2
10	3.19	67.8	8.85
12.5	3.54	66.9	8.63
15	3.61	64.0	8.42
17.5	3.94	64.8	8.28
20	4.05	66.7	8.25
22.5	4.10	66.8	8.25
25 27 F	4.05	66.6	8.20
27.5	4.05	66.8	8.20
30	4.05	66.8	8.20

INLAND EMPIRE ENVIRONMENTAL SERVICES

APPENDIX B LABORATORY TEST RESULTS

INLAND EMPIRE ENVIRONMENTAL SERVICES

Analytical Testing Report Summary

Client:

IEES

Date Sampled:

2/18/94

Project:

Crown City Plating

Date Received:

2/19/94

Matrix:

Water

Date Analyzed:

2/28/94

Project ID:

94-015

Date Reported:

3/3/94

-						
Test Method	<u>Analyte</u>	Sample ID	<u>Lab ID</u>	Result	Reporting Limit	<u>Units</u>
8240*	Acetone	E-1	94-0065	ND	10.0	ug/L
	Benzene			ND	2.0	ug/L
	Bromodichloromethane			ND	2.0	ug/L
	Bromoform			ND	2.0	ug/L
	Bromomethane			ND	5.0	ug/L
	2-Butanone			ND	10.0	ug/L
	Carbon Disulfide			ND	5.0	ug/L
	Carbon Tetrachloride			ND	5.0	ug/L
	Chlorobenzene			ND	2.0	ug/L
	Chlorodibromomethane			ND	2.0	ug/L
	Chloroethane			ND	5.0	ug/L
	2-Chloroethylvinyl Ether			ND 6.5	2.0	ug/L
	Chloroform			6.5 ND	2.0 5.0	ug/L
	Chloromethane			ND	2.0	ug/L
	1,1-Dichloroethane					ug/L
	1,2-Dichloroethane			ND	2.0	ug/L
	1,1-Dichloroethene			18	5.0	ug/L
	cis-1,2-Dichloroethene			МD	2.0	ug/L
	trans-1,2-Dichloroethene			ND	2.0	ug/L
	1,2-Dichloropropane			ND	2.0	ug/L
	cis-1,3-Dichloropropene			ND	2.0	ug/L
	trans-1,3-Dichloropropene			ND	2.0	ug/L
	Ethylbenzene			ND	2.0	ug/L
	2-Hexanone			ND	10.0	ug/L
	Methylene Chloride			99	10.0	ug/L
	4-Methyl-2-Pentanone			ND	5.0	ug/L
	Styrene			ND	2.0	ug/L
	1,1,2,2-Tetrachloroethane			ND	2.0	ug/L
	Tetrachloroethene			180	2.0	ug/L
	Toluene			ND	2.0	ug/L
	1,1,1-Trichloroethane			33	2.0	ug/L
	1,1,2-Trichloroethane			ND	2.0	ug/L
	Trichloroethene			130	2.0	ug/L
	Trichlorofluoromethane			ND	5.0	ug/L
	Vinyl Acetate			ND	5.0	ug/L
	Vinyl Chloride			ND	5.0	ug/L
	Total Xylenes			ND	2.0	ug/L

E.A.R.T.H. Sciences and Analytical Technologies 237 S. Waterman Avenue, Suite B San Bernardino, CA 92408 Tel: (909) 888-6544 FAX: (909) 885-7037

94-015 Project Name:	Crown City Plating	Date Sampled:	2/18/94		Page 2 of 4			
Test Method	Analyte	Sample ID	<u>Lab ID</u>	Result	Reporting Limit	<u>Units</u>		
8240*	Acetone	E-2	94-0066	ND	10.0	ug/L		
	Benzene			ND	2.0	ug/L		
	Bromodichloromethane			ND	2.0	ug/L		
	Bromoform			ND	2.0	ug/L		
	Bromomethane			ND	5.0	ug/L		
	2-Butanone			ND	10.0	ug/L		
	Carbon Disulfide			ND	5.0 5.0	ug/L		
	Carbon Tetrachloride			ND ND	5.0	ug/L		
	Chlorobenzene Chlorodibromomethane			ND	2.0 2.0	ug/L ug/L		
	Chloroethane			ND ND	5.0	ug/L ug/L		
	2-Chloroethylvinyl Ether			ND	2.0	ug/L		
	Chloroform			ND	2.0	ug/L		
	Chloromethane			ND	5.0	ug/L		
	1,1-Dichloroethane			ND	2.0	ug/L		
	1,2-Dichloroethane			ND	2.0	ug/L		
	1,1-Dichloroethene			ND	5.0	ug/L		
	cis-1,2-Dichloroethene			ND	2.0	ug/L		
	trans-1,2-Dichloroethene			ND	2.0	ug/L		
	1,2-Dichloropropane			ND	2.0	ug/L		
	cis-1,3-Dichloropropene			ND	2.0	ug/L		
	trans-1,3-Dichloropropene			ND	2.0	ug/L		
	Ethylbenzene			ND	2.0	ug/L		
	2-Hexanone			ND	10.0	ug/L		
	Methylene Chloride			ND	10.0	ug/L		
	4-Methyl-2-Pentanone			ND	5.0	ug/L		
	Styrene			ND	2.0	ug/L		
	1,1,2,2-Tetrachloroethane			ND	2.0	ug/L		
	Tetrachloroethene			ND	2.0	ug/L		
	Toluene			ND	2.0	ug/L		
	1,1,1-Trichloroethane			ND	2.0	ug/L		
	1,1,2-Trichloroethane			ND	2.0	ug/L		
	Trichloroethene			580	2.0	ug/L		
	Trichlorofluoromethane			ND	5.0	ug/L		
	Vinyl Acetate			ND	5.0	ug/L		
	Vinyl Chloride			ND	5.0	ug/L		
	Total Xylenes			ND	2.0	ug/L		

94-015 Project Name:	Crown City Plating	Date Sampled:	2/18/94		Page 3 of 4				
Test Method	<u>Analyte</u>	Sample ID	<u>Lab ID</u>	Result	Reporting Limit	<u>Units</u>			
8240*	Acetone	E-3	94-0067	ND	10.0	ug/L			
	Benzene			ND	2.0	ug/L			
	Bromodichloromethane			ND	2.0	ug/L			
	Bromoform			ND	2.0	ug/L			
	Bromomethane			ND	5.0	ug/L			
	2-Butanone			ND	10.0	ug/L			
	Carbon Disulfide			ND	5.0	ug/L			
	Carbon Tetrachloride			ND	5.0	ug/L			
	Chlorobenzene			ND	2.0	ug/L			
	Chlorodibromomethane			ND	2.0	ug/L			
	Chloroethane			ND ND	5.0 2.0	ug/L ug/L			
	2-Chloroethylvinyl Ether Chloroform			ND	2.0	ug/∟ ug/L			
	Chloromethane			ND	5.0	ug/L			
	1,1-Dichloroethane	•		ND	2.0	ug/L			
	1,2-Dichloroethane			ND	2.0	ug/L			
	1,1-Dichloroethene			ND	5.0	ug/L			
	cis-1,2-Dichloroethene			ND	2.0	ug/L			
	trans-1,2-Dichloroethene			ND	2.0	ug/L			
	1,2-Dichloropropane			ND	2.0	ug/L			
	cis-1,3-Dichloropropene			ND	2.0	ug/L			
	trans-1,3-Dichloropropene			ND	2.0	ug/L			
	Ethylbenzene			ND	2.0	ug/L			
	2-Hexanone			ND	10.0	ug/L			
	Methylene Chloride			ND	10.0	ug/L			
	4-Methyl-2-Pentanone			ND	5.0	ug/L			
	Styrene			ND	2.0	ug/L			
	1,1,2,2-Tetrachloroethane			ND	2.0	ug/L			
	Tetrachloroethene			14	2.0	ug/L			
	Toluene			ND	2.0	ug/L			
	1,1,1-Trichloroethane			ND	2.0	ug/L ug/L			
	1,1,2-Trichloroethane			ND	2.0	ug/L ug/L			
	Trichloroethene			370	2.0	ug/L ug/L			
	Trichlorofluoromethane			ND	5.0	ug/L			
	Vinyl Acetate			ND	5.0	ug/L			
	Vinyl Chloride			ND	5.0	-			
	Total Xylenes			ND	2.0	ug/L			
	i otal Aylenes			ND	۷.0	ug/L			

94-015 Project Name:	Crown City Plating	Date Sampled:	2/18/94		Page 4 of 4				
Test Method	Analyte	Sample ID	<u>Lab ID</u>	Result	Reporting Limit	<u>Units</u>			
180.1*	Turbidity	E-1	94-0065	2,700	0.1	NTU			
180.1*	Turbidity	E-2	94-0066	60	0.1	NTU			
180.1*	Turbidity	E-3	94-0067	110	0.1	NTU			

ND: not detected at specified reporting limit

*analysis performed by DHS #1169.

Clifton J. Kiser
Technical Director/Quality Assurance

Date

E.A.R.T.H. Sciences and Analytical Technologies

287 S. Waterman Avenue, Suite B., San Bernardino, Ch. 32100 P.O. Box 10396, San Bernardino, CA 92423-0396 Tel: (909) 888-6544 FAX: (909) 885-7037

ESAT I	Project ID #:	9	1-015
PAGE		OF	

CHAIN OF CUSTODY RECORD

Sampling	Date: 2-18-94	Clien	t Na	me:	2	EE_	S							P	rojec	t Nar	ae/II): 	CR C	wy	· c	27	~	
Contractor	" ZEES	Stree	t Ad	dress	: 7	1991	ASI	465	,	4 V	·/-			8	treet	Addr	ess:							
Sampler:	PEARCE	City,	COC	10	Coc	le:	И	923	24	/				C	ity, S	tate,	Zip C	ode:						
FAX/Send	Results To:		Sen	d Inv	voice	To (ii	differe	nt from	abov	e):		7	7	S	ecify	all A	nalys	es R	equir	ed	/			
Telephone	∓ #:	·····																					,	##
FAX #:] /	/ V/	/ ₂ /	/ ,	/ ,	/ ,	/ ,	/ ;	/	/ /				ESAT Laboratory ID#:
Site			S	amp	le M	atrix	ing od-	ner	٤	att ve		r/.												E
Location	Sample ID	Time	Soff	Water	ż	Other	Sampling Method	Container Type	Volume	Preserv	16	12/2								$\int s_1$		ments Instru	and ctions:	2
E-1				X							X													94-0065
E-2				X							X													94-0006
E-3				X							X													94-006
E-1												Y												94-0065
E-Z												×												94-0066
E-3												X												94-0067
																							······································	
								 																
· · · · · · · · · · · · · · · · · · ·		aples Sea	led:	Y	N	Method	of Shipme er 🔲	nt: Hand Ca	i	d [] G	roun	d Shi	pped			round Iour		48-	72 Ho	oms 🗆	Reg	gular (4-)	0 Days) 🗖
	By (Signature):	Date/1		•		Relinq	ulshed By	(Signature)	:			Date	/Time			Reli	aquish	ed By	(Sign	ture):			Date/Tim	b:
Taven	n P. Pean	2-19		12:	$\langle \mathcal{S} \rangle$	<u> </u>		· · · · · · · · · · · · · · · · · · ·								<u> </u>		<u>.</u>						
Received By	Signature):	Date/I	lme	1		Receiv	red By (Si	mature):				Date	/Time	: 		Roce	luf	ESA	T By (Signatu	re):	İ	Date/The	11220